Acknowledgements

• Caltrans
 - Terrie Bressette, Cathrina Barros, Glenn Johnson

• Graniterock
 - Mike Cook

• Technology providers
 - Advera - Annette Smith
 - Evotherm - Everett Crews
 - Sasobit - John Shaw, Larry Michael
Summary

• Objectives
• Study questions
• Experiment design
• Experiment layout
• Pavement and mix design
• Test track construction
• HVS testing
• Laboratory testing
Objectives

- Determine whether the addition of additives to reduce the production and construction temperatures of asphalt concrete influences performance
- Additives tested:
 - Advera
 - Evotherm
 - Sasobit
Summary

- Objectives
- Study questions
- Experiment design
- Experiment layout
- Pavement and mix design
- Test track construction
- HVS testing
- Laboratory testing
Study questions

• What is the comparative energy usage during mix preparation?
• Can satisfactory density be achieved at lower temperatures?
• What is the optimal temperature range for achieving compaction requirements?
• What are the cost implications?
• Does the addition of the additive influence rutting performance of the mix?
Study questions

• Is the treated mix more susceptible to moisture sensitivity given that the aggregate is heated to lower temperatures?
• Does the addition of the additive influence fatigue performance?
• Does the addition of the additive influence skid resistance?
• Does the addition of the additive influence the performance of the mix in any other way?
• If the experiment is extended to rubberized and open-graded mixes, are the benefits of adding the additives to these mixes the same as for conventional mixes?
Summary

- Objectives
- Study questions
- Experiment design
- Experiment layout
- Pavement and mix design
- Test track construction
- HVS testing
- Laboratory testing
Experiment design

- **Phase 1**
 - Early rutting potential at elevated temperatures
 - FMFC Laboratory testing
 - Shear (T320)
 - Fatigue beam (wet & dry) (T321)
 - Hamburg Wheel Test (T324)
 - Tensile Strength Ratio (CT371)

- **Phase 2**
 - Moisture sensitivity?
 - LMLC Laboratory testing?

- **Phase 3**
 - Fatigue?

- **Phase 4**
 - Aged rutting?
Experiment layout

- **Location**
 - Graniterock AR Wilson Quarry, Aromas, CA
- **Test track**
 - 80m x 8m
- **Test sections**
 - 4 sections
 - 40m x 4m
 - 3 or 4 HVS experiments
Summary

- Objectives
- Study questions
- Experiment design
- Experiment layout
- Pavement and mix design
- Test track construction
- HVS testing
- Laboratory testing
Pavement design

Layer: Bedrock
Thickness: Semi-infinite
Modulus: >3,000 MPa

Layer: Existing Subbase
Thickness: 250 mm
Modulus: 400 MPa

Layer: Imported Class 2 Aggregate Base
Thickness: 300 mm
Modulus: 150 MPa

Layer: DGAC
Thickness: 2 x 60 mm = 120 mm
Modulus: 1,000 MPa
Mix design

- **Mix design**
 - “Standard” Graniterock mix design
 - Mix design not changed for additives
 - PG64-16 binder
 - No anti-strip added

- **Control mix temperature**
 - 155°C (310°F)

- **Warm-mix temperature**
 - 120°C (250°F)
Summary

• Objectives
• Study questions
• Experiment design
• Experiment layout
• Pavement and mix design
• Test track construction
• HVS testing
• Laboratory testing
Base construction
Base construction
Test track construction

- **Surfacing**
 - All mix produced first
 - 150 tons per mix
 - Stored in silos
 - 1st 25 tons “wasted”

- **Process**
 - Prime coat
 - 4 x lower lifts placed (60mm)
 - Tack coat
 - 4 x upper lifts placed (60mm)

- **Strain gages installed on base**
Test track construction
Test track construction - QC

Control - Average 135°C (275°F)
WMA - 105°C to 117°C (220°F to 240°F)
Test track construction - QC

<table>
<thead>
<tr>
<th>Section</th>
<th>Bottom</th>
<th>Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>135</td>
<td>127</td>
</tr>
<tr>
<td>2</td>
<td>105</td>
<td>109</td>
</tr>
<tr>
<td>3</td>
<td>106</td>
<td>113</td>
</tr>
<tr>
<td>4</td>
<td>117</td>
<td>111</td>
</tr>
</tbody>
</table>

Temperature (°C)
Test track construction - QC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>Section 1</th>
<th>Section 2</th>
<th>Section 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder content (%)*</td>
<td>5.29</td>
<td>5.14</td>
<td>5.23</td>
<td>4.48</td>
</tr>
<tr>
<td>MC before (%)</td>
<td>0.24</td>
<td>0.41</td>
<td>0.37</td>
<td>0.31</td>
</tr>
<tr>
<td>MC after (%)</td>
<td>0.09</td>
<td>0.25</td>
<td>0.32</td>
<td>0.25</td>
</tr>
<tr>
<td>Air voids (%)</td>
<td>5.61</td>
<td>5.39</td>
<td>7.13</td>
<td>6.99</td>
</tr>
</tbody>
</table>

* Range 4.7 - 5.7, target 5.2
Test track construction
Test track construction - QC
Test track construction - QC
Summary

- Objectives
- Study questions
- Experiment design
- Experiment layout
- Pavement and mix design
- Test track construction
- HVS testing
- Laboratory testing
HVS overview

• 1 of 2 Caltrans machines
• 8 worldwide + 2
• Designed and built in S. Africa
• Capability
 - 30 - 205kN (7-67kps)
 - 1,000 load applications/hour
 - 13km/h wheel speed
 - Uni/bidirectional
 - Channelized/wander
 - Dynamic loading
 - Dual, wide-based, aircraft tires
 - Environmental chamber
 - Mobile and self-propelled
HVS instrumentation

- Load calibration
 - WIM, hydraulic sensor
- Temperature
 - Thermocouples/temperature buttons
- Deflection
 - Road surface deflectometer (RSD)
 - Multi-depth deflectometer (MDD)
 - Joint deflectometer (JDMD)
- Permanent deformation
 - Laser profilometer
 - Multi-depth deflectometer (MDD)
- Tire contact stress
 - 3-d load cell
Phase 1 testing plan

- **Pavement temp**
 - 50°C at 50mm (122°F at 2in)
 - 55°C at 50mm after 155,000 reps
- **Load**
 - 40kN (9,000 lbs)
 - 60kN after 185,000 reps
- **Tires**
 - Dual, 720kPa (104psi)
- **Traffic**
 - Unidirectional, channelized
- **Failure criteria**
 - 12.5mm (½ in) rut
Control - 195,000 reps
Rut progression

Number of Load Repetitions

Control
Control - profile

![Graph showing average displacement vs. transverse distance](image)

- Transverse Distance (mm)
- Average Displacement (mm)

- Control
- 600FD
Control – contour plot

Transverse Distance (mm)

Stations

Color Map for Profilometer Reading (mm)
Summary

- Objectives
- Study questions
- Experiment design
- Experiment layout
- Pavement and mix design
- Test track construction
- HVS testing
- Laboratory testing
FMFC sampling
Lab - Experimental design

- **Shear (RSST-CH)**
 - AASHTO T320
 - 2 temperatures (45°C and 55°C)
 - 3 stresses (70kPa, 100kPa, 130kPa [230kPa])
 - 3 replicates
 - 6 frequency sweeps

- **Flexural Fatigue Beam**
 - AASHTO T321
 - 3 temperatures (10°C, 20°C and 30°C)
 - 2 strains (200µstrain and 400 µstrain)
 - 3 replicates
 - 6 frequency sweeps
Lab - Experimental design

- **Moisture sensitivity**
 - Hamburg Wheel Test
 - AASHTO T324 - 4 replicates
 - Tensile Strength Ratio
 - CT371 - 3 replicates
 - Flexural Fatigue Beam (wet)
 - AASHTO T321
 - 3 temperatures (10°C, 20°C and 30°C)
 - 2 strains (200µstrain and 400 µstrain)
 - 3 replicates
 - 6 frequency sweeps
RSST - Cycles to 5% PSS
Rut progression

![Graph showing rut progression with number of load repetitions on the x-axis and total rut (mm) on the y-axis. The graph includes a line labeled 'Control.' The x-axis ranges from 0 to 300,000 load repetitions, and the y-axis ranges from 0 to 14 mm.]
Master curve (Fatigue beam, dry)

WMA FMFC (Dry, $T_{\text{ref}} = 20^\circ$C)

Reduced $\ln(\text{freq})$ (Hz) vs. E^* (MPa)
Way forward

• Complete lab study
• Begin Phase 2 HVS testing
 - Moisture sensitivity or fatigue
• Reports
 - 1st Level Report – Construction
 - 1st Level Report – Phase 1 rutting study
 - End June 2008.