Warm Mix Asphalt: Best Practices

NAPA 53rd Annual Meeting

Brian D. Prowell, Ph.D., P.E.
Graham C. Hurley
Acknowledgements

• The authors thank:
 – The WMA technology providers
 – The many contractor and DOT personnel who provided information on projects
 – John Bartoszek, Bill Garret and Malcolm Swanson for their input on production

• The authors particularly thank Margaret Cervarich and Dave Newcomb for their tireless efforts in editing!
Global Warming

$110M worth of voluntary offsets bought in ’06

Sustainable Development

FIGURE 3: Counties not attaining the National Ambient Air Quality Standards (NAAQS) of the Clean Air Act, April 2005.

TR News, Jan./Feb. 2006
Better Neighbors, Better Working Conditions

• NAPA has taken the lead in responding to a number of environmental, and health and safety issues:
 – Clean Air Act 1970 – Development of wet scrubbers and baghouses
 – Oil Embargo 1970’s – Use of RAP
 – Concerns for paver operators – Engineering controls
 – Impact of asphalt plants on neighbors – Green Diamond Achievement Awards

• This trend continues with WMA
Short History of WMA

- 1995-96 - First European experiments
- 1997-99 – First pavements constructed in Europe
- 2002 - NAPA Study Tour to Europe
- 2003 - Featured at NAPA’s Annual Convention
- 2004
 - Demonstration at World of Asphalt
 - First U.S. field trials (Aspha-min) in FL and NC
- 2005-06
 - Numerous field trial, some “production” paving in MO
 - NCAT publishes research on Aspha-min, Sasobit, and Evotherm
- 2007
 - FHWA Scan
 - AASHTO/NCHRP research projects underway
Purpose

- Present the state of the practice for WMA
 - Overview of technologies
 - Benefits
 - Best practices for production and laydown
 - Future needs
Chapter 2
Overview of Technologies

Provides:

- Contact information
- Technology description
 - Plant modifications
 - Mix design modifications
- Experience/Usage
Technologies and Temperature Reduction

<table>
<thead>
<tr>
<th>WMA Technology</th>
<th>Process Type</th>
<th>Decreases Production Temperatures by 30 to 50°F (17 to 28°C)</th>
<th>Decreases Production Temperatures by More Than 50°F (28°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Barrel® Green</td>
<td>Foaming</td>
<td>XX<sup>1</sup></td>
<td>X<sup>2</sup></td>
</tr>
<tr>
<td>Evotherm™</td>
<td>Chemical Additive</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>(LEA) Low Energy Asphalt</td>
<td>Foaming</td>
<td></td>
<td>XX</td>
</tr>
<tr>
<td>Rediset™ WMX</td>
<td>Chemical Additive</td>
<td>XX</td>
<td>X</td>
</tr>
<tr>
<td>REVIX™</td>
<td>Chemical Additive</td>
<td>X</td>
<td>XX</td>
</tr>
<tr>
<td>Sasobit</td>
<td>Organic Additive</td>
<td>XX</td>
<td>X</td>
</tr>
<tr>
<td>Synthetic Zeolite</td>
<td>Foaming</td>
<td>XX</td>
<td>X</td>
</tr>
<tr>
<td>WAM-Foam</td>
<td>Foaming</td>
<td>XX</td>
<td></td>
</tr>
</tbody>
</table>

¹Frequently observed; ²Observed
New Technologies

Double Barrel® Green

Rediset™ WMX

REVIX™
Plant Modifications
Experience and Usage

- New WMA technologies are being introduced
- There is more research/experience with some, than with others
- Provides information from projects regarding:
 - Binder grades,
 - Aggregate type,
 - Mix type,
 - RAP content, and
 - Tonnage
- Designed to be updated
Chapter 3 - Benefits

- **Paving Benefits**
 - Compaction aid
 - Cold-weather paving
 - Longer haul distances
 - Use of higher percentages of RAP
 - Less restriction, potentially more production in non-attainment areas
 - Specific pavement rehabilitations

- **Reduced Fuel Usage**
- **Reduced Emissions**
- **Improved Working Conditions**
Cold-weather Paving

- The greater the differential between the mix and ambient temperatures, the faster the mix cools
- WMA cools slower
- WMA allows compaction at lower temperatures

PG 82-22, January 12, 2008
Avg. Density: 93.9% cores
93.7% nuclear gauge
Longer Haul Distances

Placing WMA at Ohio University’s Accelerated Pavement Load Facility after hauling for over one hour
Paving over Crack Sealant

HMA

WMA after six months
Fuel Savings

- Theoretical calculations show 50 °F reduction in temperature = 11% savings
- Reported fuel savings typically 30 to 35%
 - Larger savings may be driven by heat losses from plant during mixing
- Processes where a portion of the aggregate is not heated above the boiling point of water have shown savings of 34 to 47%
Reduced Emissions

HMA at 330 °F

WMA at 255 °F

Reduced or eliminated fugitive emissions!
Best Practices for Producing WMA

- Reduce stockpile moisture content
- Tune burner to ensure complete combustion
- Drying aggregate while maintaining baghouse temperatures
Reduce Stockpile Moisture

- Saves fuel – 2% decrease = savings of 0.48 gal/ton
- Drier aggregate in = drier aggregate out, reducing potential for moisture damage
Tune Burner – Prevent Fuel Contamination

- Can be difficult to adjust burner with lower production temperatures combined with lower production rates (trial sections)
- WMA more sensitive to contamination than HMA

Note brown color of mix. Project had high VOCs and CO
Why Incomplete Combustion?

- Incomplete atomization of fuel
 - Nozzles worn
 - Air passages plugged with yard dust
 - Fuel not adequately pre-heated
- Both projects where contamination suspected used reclaimed motor oil as fuel
 - Manufacturers generally recommend preheating to obtain maximum viscosity of 90 Saybolt Seconds Universal (SSU)
 - Astec recommends preheating to viscosity of 70 SSU
 - #2 Oil viscosity 40 SSU
Indications of Moisture in Aggregate

- Difference in exhaust temperatures across breach exceeds 60 °F
- Mix temperature drop more than 20 °F from discharge to load out
Best Practices for Baghouse

- Preheat for 15 to 20 minutes to remove condensation
- Monitor pressure drop across bags, pressure drop greater than 4-5 inches may indicate caking
- Inspect baghouse fines return lines
Drying Aggregate while Maintaining Baghouse Temperatures

<table>
<thead>
<tr>
<th>Action</th>
<th>Benefit</th>
<th>Consequence or Detriment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce slope of drum. An alternative may be to install a donut in the</td>
<td>Increases aggregate dwell time which will allow more complete drying at lower temperature.</td>
<td>Maybe expensive to make change. Will increase electrical consumption of the motor used to turn the drum due to additional weight in the drum. May decrease temperature of exhaust gases to baghouse.</td>
</tr>
<tr>
<td>drum to retard the aggregate flow.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove a portion of the flights to increase heat penetration.</td>
<td>Increase baghouse temperature.</td>
<td>Reduces heat transfer efficiency. May cause baghouse to overheat when producing HMA with a high percentage of</td>
</tr>
<tr>
<td>Increase combustion air (induced or forced) for a given burner setting</td>
<td>Increases hot exhaust gases above that needed to dry aggregate. Additional gases increase baghouse temperature.</td>
<td></td>
</tr>
<tr>
<td>Add a minimum of 10 to 15 percent RAP to mix.</td>
<td>Virgin aggregate must be superheated to dry RAP. Superheating improves drying of virgin aggregate and increases baghouse temperature.</td>
<td>None.</td>
</tr>
</tbody>
</table>

Keep Baghouse above 220 °F for low sulfur fuels and above 240 – 250 °F for high sulfur fuels to prevent corrosion.
Combining WMA and RAP

- A win-win or Green-Green solution!
- Adding 10 to 15% RAP
 - Reduces veil, increasing heat penetration, increasing baghouse temperature
 - Superheated virgin aggregate more likely to dry
 - Lower WMA temps reduce oxidation of virgin binder – good for RAP in terms of cracking
 - Aged RAP binder helps offset softer virgin binder in terms of rutting
Chapter 5: Summary and Research Needs
Research Needs

- Mix Design
- Long-term Performance
- Product Approval System
- Quantification of Benefits
- RAP and WMA
- Production Equipment
Performance of WMA from U.S. Scan Tour

- Consensus of European Countries that WMA should provide equal or better performance than HMA
 - Norway – performance mixed, problems not attributed to WMA
 - Germany – performance same or better, developed guidelines to allow use of waxes and zeolite
 - France – toll road operator, district, and city of Paris pleased with performance to date
Evotherm Test Sections

NCAT Test Track - November 2005

<table>
<thead>
<tr>
<th>N2</th>
<th>N1</th>
<th>E9</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA Control PG 67-22</td>
<td>Evotherm PG 67-22 + 3% Latex</td>
<td>Evotherm PG 67-22</td>
</tr>
<tr>
<td>1”</td>
<td>9.5 mm NMAS</td>
<td></td>
</tr>
<tr>
<td>2”</td>
<td>19.0 mm NMAS w/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evotherm PG 67-22</td>
<td></td>
</tr>
<tr>
<td>2”</td>
<td>19.0 mm NMAS w/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evotherm PG 67-22</td>
<td></td>
</tr>
</tbody>
</table>

N_{design} = 80 for all mixes
Highway 115, Charlotte – after 26 months
Product Approval

- As interest grows, how do we sort good products from bad?
 - Initial laboratory screening
 - Well documented field trials
 - National or regional certification
 - France and Germany both have well developed systems
 - Needed for all new products
Why Warm Mix?

• Warm Mix can address a variety of needs
 – Improved compaction
 – Fuel Savings
 – Environmental
 – Working conditions
• Significant research already completed
• Future looks warm!
Brian Prowell
Advanced Materials Services, LLC
1975 Mall Blvd., Suite 202
Auburn, AL 36830
(334) 408-4855
Brian. AMSLLC@Charterinternet.com