Warm Mix Asphalt

Technical Working Group Meeting

Marriott Hunt Valley Inn
Baltimore, MD
Dec. 12-13, 2007

Federal Highway Administration
Office of Pavement Technology
Warm Mix Asphalt Characterization

Binder Properties

Mixture Properties
Acknowledgements

Matt Corrigan – Program Manager

Jagan Guddimettla – Mix Project Engineer
Satish Belagutti – Binder Project Engineer
Raj Dongré – DLS, Inc
Justin Tesch – Mix Tech
Joshua Thompson – Mix Tech
David Heidler – Binder Tech
Darnel Jackson – Binder Tech

also:

TFHRC Group
Nelson Gibson
Scott Parobeck
Frank Davis
Projects

Warm Mix Asphalt Projects

<table>
<thead>
<tr>
<th>Location</th>
<th>Mix Design</th>
<th>Lab Compaction Level, gyrations</th>
<th>Base Binder Grade</th>
<th>Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall St, St. Louis, MO</td>
<td>12.5mm Superpave</td>
<td>100</td>
<td>PG 70-22</td>
<td>Aspha-Min, Evotherm, Sasobit</td>
</tr>
<tr>
<td>I-70 w of Eisenhower Tunnel, Frisco, CO</td>
<td>9.5mm Superpave</td>
<td>75</td>
<td>PG 58-28</td>
<td>Advera, Evotherm, Sasobit</td>
</tr>
<tr>
<td>E Entrance Rd, Yellowstone National Park, WY</td>
<td>19mm Hveem</td>
<td>75</td>
<td>PG 58-34</td>
<td>Advera, Sasobit</td>
</tr>
</tbody>
</table>

Federal Highway Administration
Office of Pavement Technology
FHWA Power Chart
12.5 mm Superpave, MO 0672

Sieve Size Raised to 0.45 Power

Percent Passing

JMF
Maximum Density Line
PCS
Binder Characterization
Objective

• Evaluate the effects of three Warm Mix process namely Sasobit, Aspha-Min and Evotherm on M320-Table 2 Performance Grade

• To Compare the Performance Grades of Warm Mix processes with the base asphalt used in preparing warm mix asphalts
Study Approach

• Experiment Design
 – Base Asphalt PG 70-22
 – Base Asphalt + 1.5% Sasobit
 – Base Asphalt + 5.26% Aspha-Min
 – Evotherm – (emulsion)
<table>
<thead>
<tr>
<th>Additive</th>
<th>M320 Continuous Performance Grade</th>
<th>M320, Table 2 Performance Grade</th>
<th>Additive Rate, by wt of binder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>70.9 – 24.8</td>
<td>70 - 22</td>
<td></td>
</tr>
<tr>
<td>Sasobit</td>
<td>76.5 – 22.8</td>
<td>76 - 22</td>
<td>1.5%</td>
</tr>
<tr>
<td>Aspha-Min</td>
<td>72.4 – 24.6</td>
<td>70 - 22</td>
<td>5.26%</td>
</tr>
<tr>
<td>Evotherm - recovered</td>
<td>66.6 – 26.7</td>
<td>64 - 22</td>
<td></td>
</tr>
<tr>
<td>(ASTM D 6934)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hall St, St. Louis, MO

- Base Asphalt: PG 70.9, Low Temperature -24.8
- Sasobit: PG 76.5, Low Temperature -22.8
- Aspha-min: PG 72.4, Low Temperature -24.6
PG Comparison - Evotherm

- Continuous PG
 - High Temperature
 - Low Temperature

<table>
<thead>
<tr>
<th>Asphalt Binders</th>
<th>BASF Method</th>
<th>BASF Method - FHWA</th>
<th>British</th>
<th>ASTM D6934</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70.1</td>
<td>68.2</td>
<td>67.6</td>
<td>66.6</td>
</tr>
<tr>
<td></td>
<td>-23.3</td>
<td>-25.9</td>
<td>-26.6</td>
<td>-26.7</td>
</tr>
</tbody>
</table>
I-70, Frisco, CO

<table>
<thead>
<tr>
<th>Additive</th>
<th>M320 Continuous Performance Grade</th>
<th>M320, Table 2 Performance Grade</th>
<th>Additive Rate, by wt of binder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>59.9 – 30.3</td>
<td>58 – 28</td>
<td></td>
</tr>
<tr>
<td>Sasobit</td>
<td>64.2 – 29.2</td>
<td>64 – 22</td>
<td>1.5%</td>
</tr>
<tr>
<td>Aspha-Min</td>
<td>61.1 – 30.9</td>
<td>58 – 28</td>
<td></td>
</tr>
<tr>
<td>Advera</td>
<td>60.7 – 30.4</td>
<td>58 - 28</td>
<td>4.33%</td>
</tr>
<tr>
<td>Evotherm</td>
<td>NO DATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M320 Continuous Performance Grade</td>
<td>M320, Table 2 Performance Grade</td>
<td>Additive Rate, by wt of binder</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Base</td>
<td>60.2 – 34.1</td>
<td>58 – 28</td>
<td></td>
</tr>
<tr>
<td>Sasobit</td>
<td>65.1 – 32.0</td>
<td>64 – 28</td>
<td>1.5%</td>
</tr>
<tr>
<td>Advera</td>
<td>61.2 – 33.2</td>
<td>58 – 28</td>
<td>5.2%</td>
</tr>
</tbody>
</table>
Findings

- Sasobit – increase of 1 high temp grade
- Aspha-Min - no impact on PG grade
- Evotherm - recovered at BASF, no effect on the PG
- Evotherm - recovered from the stored emulsion was reduced by one grade
Findings

• Emulsion recovery processes had no effect on the PG. The PGs from all three recovery methods were found to be the same.

• ASTM D6934 was found to be the quickest and easiest process to recover the Evotherm residue from emulsion.
Mixture Characterizations
Objectives

• When should performance specimens be tested
• What are the effects of reheating on performance test properties

• Approach
 – Immediate Testing
 – Delayed Testing
 – Reheated Testing
St. Louis Paving Schedule

- **Control** (12.5mm PG 70-22) – 5/17/06
- **Sasobit** – 5/18/06
- **Sasobit** – 5/19/06
- **Evoetherm** – 5/22/06
- **Evoetherm** – 5/23/06
- **Aspha-Min** – 5/25/06
Sampling

- **IMMEDIATE Testing**
 - Next day after manufacture
- **Truck bed** ≈ every 2hrs of production
 - Volumetric
 - Pb – Ignition
 - Gmm
 - Gmb
 - SPT; TSR; Hamburg
Sampling

• DELAYED Testing
 – 2-3 weeks after manufacture

• Truck bed ≈ every 2 hrs of production
 – Volumetric
 • Pb – Ignition
 • Gmm
 • Gmb
 – SPT; TSR; Hamburg
Sampling

- REHEATED (TFHRC)
- 1~2 tons
 - 15 – 5 gallon buckets
 - SPT; TSR; Hamburg
- *Nelson Gibson - TFHRC*
SGC

- 6 nights - 366 specimens
Dynamic Modulus (E*)

- Test Temperatures
 - 4.4° C (40° F)
 - 21.1° C (70° F)
 - 37.8° C (100° F)
 - 54.4° C (130° F)

- Frequency Sweep
 - 0.1, 0.5, 1, 5, 10, 25 Hz
Master Curve – Arrenhius Fit

- 25 Hz
- 5 Hz
- 1 Hz
- 0.1 Hz

Temperature Points:
- 4.4° C
- 21.1° C
- 37.8° C
- 54.4° C

Frequency Points:
- 0.1 Hz
- 1 Hz
- 5 Hz
- 25 Hz

Reduced Time, sec

E*, ksi

Fit
E* - Master Curve

Hall St, St. Louis, MO

![Graph showing E* vs. Reduced Time, with different control conditions: Immediate, Delayed, and Reheated. The graph includes logarithmic scales for both axes, ranging from 1E-09 to 1E+05 for Reduced Time and from 10 to 1E+05 for E*, MPa. The legend indicates the different control conditions.](image-url)
E* - Master Curve

Hall St, St. Louis, MO

Reduced Time, sec

E*, MPa

Sasobit - Immediate
Sasobit - Delayed
Sasobit - Reheated
E* - Master Curve

Hall St, St. Louis, MO

Reduced Time, sec

E*, MPa

- Aspha-Min - Immediate
- Aspha-Min - Delayed
- Aspha-Min - Reheated
E* - Master Curve

I-70, Frisco, CO

- Control Mix
- Advera
- Sasobit
E* - Master Curve

E. Entrance Rd, Yellowstone, WY
Pb - 5.3%, Mix Design Replication

Reduced Time, sec

E*, MPa

Control Mix
Advera
Sasobit
E* - Master Curve

E. Entrance Rd, Yellowstone, WY
Average WMA Production

Reduced Time, sec

E*, MPa

Control Mix • Advera
Sasobit

10 100 1000 10000 100000

1.E+05 1.E+03 1.E+01 1.E+03 1.E+05
Flow Number, Fn

- Test Temperatures
 - LTTPBind, Version 3.1 Software
 - Site pavement temperature @ 50% Reliability
 - Pvmnt Temp, ± 6° C
Flow Number, F_n

Hall Street, St. Louis, MO

- Test Temperatures
 - 46º C (115º F)
 - 52º C (126º F)
 - 58º C (136º F)

- Loading
 - 600 kPa – Deviator Stress
 - 0 kPa – Confining Pressure
Flow Number, Fn

Immediate and Delayed Test Specimens

Flow Number, cycles

46° C 52° C 58° C
Flow Number, Fn

Immediate and Delayed Test Specimens

Total Cycles @ 5% Strain

46° C
52° C
58° C
Flow Number, F_n

I-70 - Frisco, CO

- **Test Temperatures**
 - $36^\circ C$ (97$^\circ$ F)
 - $42^\circ C$ (108$^\circ$ F)
 - $48^\circ C$ (118$^\circ$ F)

- **Loading**
 - 689 kPa (100 psi) – Deviator Stress
 - 69 kPa (10 psi) – Confining Pressure
Flow Number, F_n

- Control
- Advera
- Sasobit
- Evotherm

Temperature Conditions:
- 36° C
- 42° C
- 48° C
Flow Number, F_n

![Bar chart showing Flow Number for different temperatures and materials. The x-axis represents the materials: Control, Advera, Sasobit, and Evotherm. The y-axis represents the total cycles at 5% strain. The chart shows the number of cycles for each material at 36°C, 42°C, and 48°C, with bars in blue, purple, and yellow respectively.](chart.png)
Flow Number, F_n

East Entrance Rd - Yellowstone, WY

- Test Temperatures
 - $46^\circ \text{C} \ (115^\circ \text{F})$
 - $52^\circ \text{C} \ (126^\circ \text{F})$
 - $58^\circ \text{C} \ (136^\circ \text{F})$

- Loading
 - $689 \text{ kPa} \ (100 \text{ psi})$ – Deviator Stress
 - $69 \text{ kPa} \ (10 \text{ psi})$ – Confining Pressure
Flow Number, Fn
Findings

• Immediate vs Delayed Testing
 – Evotherm & Aspha-Min
 • Performance testing - delayed after specimen manufacture
 – Sasobit
 • Performance testing can be conducted immediately after specimen manufacture
Questions

Courtesy of the FHWA Mobile Asphalt Laboratories