MIX DESIGN PROCEDURES

Implementation of WMA Workshop
Overview

- Guidelines for design with WMA/RAP/RAS
- Similarities in mix design
- Differences in mix design
- Evolution of mix design
- Best Practices
“Warm Mix” Definition

- Asphalt mixtures produced at temperatures approximately 50°F (28°C) lower than typically used for HMA
- WMA technologies may be used as coating and compaction aids without reduction in temperature
Adding WMA in Mix Design

- Drop-in?
- Separate mix design?
 - 2005 – 3 technologies
 - Now – 30+
WMA Technologies

Advanced Concepts Engineering Co.: LEA-CO
AESCO/Madsen: Eco-Foam II
Akzo Nobel: Rediset WMX
All States Materials Group: ECOBIT
Arkema Group: CECABASE RT
Aspha-min: Aspha-min Online
Astec Industries: Double Barrel Green System
Engineered Additives: BituTech PER
Gencor Industries: Green Machine
Herman Grant Company: HGrant Warm Mix System
Itechimica: Qualitherm
Kumho Petrochemical and Korea Institute of Construction Technology: LEADCAP
Maxam Equipment Inc.: Aquablack Warm Mix Asphalt

McConnaughay Technologies: Low Emission Asphalt
MeadWestvaco Asphalt Innovations: Evotherm
Meeker Equipment Corp. Inc.: Meeker Warm Mix
PQ Corporation: Advera WMA
Sasol Wax North America Corporation: Sasobit
Shell: Shell Thiopave
Sonneborn Products: SonneWarmix
Stansteel: Accu-Shear Dual Warm-Mix Additive System
Tarmac Inc.: Tri-Mix Warm Mix Injection
Terex Roadbuilding: Warm Mix Asphalt System
Differences in Design Procedure

- Only minor changes to AASHTO R35
 - Appendix 2
 - Specimen Fabrication
 - Coating & Compactibility for mixing and compaction temperatures
- Simulating plant foaming process
- Compactibility, stripping, & rutting may be different
Differences Needing More Research

- WMA mixing with bucket mixers
 - Less efficient, but more available
 - Coating as a function of mixing time
Planetary Mixers

- Used for NCHRP 9-43
- Mixing times used in AASHTO R35
Differences Needing More Research

Asphalt Foaming Devices

- Does lab foaming simulate field devices
Differences Needing More Research

- STOA for moisture susceptibility & rutting resistance
 - HMA=4 hours @ 275F
 - WMA=2 hours @ compaction temp
 - Two-step conditioning
Two WMA focused NCHRP projects for 2012:
• NCHRP 9-52 “Short-Term Laboratory Conditioning of Asphalt Mixtures”
• NCHRP 9-53 “Asphalt Foaming Characteristics for Warm Mix Asphalt Applications”

Proposed WMA NCHRP project for 2013:
• “Recycled Asphalt Shingles (RAS) and Reclaimed Asphalt Pavement (RAP) in HMA/WMA Mixtures”

Courtesy: Matt Corrigan, FHWA
WMA Mix Design Guidelines

- Additives added to the asphalt binder
- Additives added to the mixture during production
- Wet aggregate mixtures
- Plant foaming process
Binder Selection

- Use same grade normally used for HMA *

* If WMA is 100°F (56°C) lower than HMA, increase high temperature one grade.
RAP & RAS in WMA

Criteria: High grade of RAP ≤ planned field compaction temperature

![Graph showing RAP and RAS high temperature grades and WMA compaction temperatures.](image)
How much RAP can I use?

- Anticipated optimum asphalt content = 5.5%
- RAP has 5.0% asphalt
- RAP low temp grade = -17.5°C
- Virgin AC low temp grade = -23.8°C
- Desired blend low temp grade = -22°C
- WMA technology reduces low temp by 2°C
% Rap Binder (of Blend)

- % RAP Binder (of blend) = \left(\frac{T_{\text{blend}} - T_{\text{virgin}}}{T_{\text{RAP}} - T_{\text{virgin}}} \right) \times 100

= \left(\frac{-22 - (-23.8)}{-17.5 - (-23.8)} \right) \times 100

= \frac{1.8}{6.3} \times 100 = 28.6\%
Maximum % RAP

\[
\text{Max. } \% \text{ RAP} = 100 \times \frac{\% \text{ RAP binder of Blend} \times \% \text{ Total AC}}{\% \text{ binder in RAP}}
\]

\[
= 100 \times \frac{28.6\% \times 5.5\%}{5.0\%} = 31.5\% \text{ RAP}
\]
Effect of WMA on RAP

Low Temperature Grade, °C

RAP Binder Content (% of Total Binder)
Effect of WMA on RAP

![Graph showing the effect of WMA on RAP](image)
Effect of WMA on RAP
Effect of WMA on RAP

Assume WMA technology reduces low temp by 2°C
Effect of WMA on RAP

Assume WMA technology reduces low temp by 2°C
RAP in WMA

- Planned field compaction temp > recovered high temp grade of RAP binder
- Some agencies assume < 100% blending
 - Example 1: 100% blending with 5.5% Total AC
 - RAP AC = 28.6% of total AC
 - 5.5% × 28.6% = 1.57% AC from RAP; 3.93% new AC
 - Example 2: 75% blending with 5.5% Total AC
 - 5.5% × 28.6% × 75%= 1.18% AC from RAP; 4.32% new AC
Number of Specimens

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Size</th>
<th>Approx. Mass</th>
<th>Number Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_{mm}</td>
<td>N/A</td>
<td>500-6,000 g (depends on NMAS)</td>
<td>2 per trial, 8 for design, 1 for compactibility</td>
</tr>
<tr>
<td>Volumetrics</td>
<td>150 mm diameter \times 115 mm high</td>
<td>4,700 g</td>
<td>2 per trial, 8 for mix design</td>
</tr>
<tr>
<td>Coating</td>
<td>N/A</td>
<td>500-6,000 g (depends on NMAS)</td>
<td>1 at optimum</td>
</tr>
<tr>
<td>Compactibility</td>
<td>150 mm diameter \times 115 mm high</td>
<td>4,700 g</td>
<td>4 at optimum</td>
</tr>
<tr>
<td>Moisture Susceptibility</td>
<td>150 mm diameter \times 95 mm high</td>
<td>3,800 g</td>
<td>6 at optimum</td>
</tr>
<tr>
<td>Flow Number</td>
<td>150 mm diameter \times 175 mm high</td>
<td>7,000 g</td>
<td>4 at optimum</td>
</tr>
</tbody>
</table>
Temperatures

- Aggregate - 15°C higher than planned production temperature
- RAP- heat with aggregate; limit to 2 hours
- Binder- heat to planned production temperature
- Short-term conditioning- heat to planned compaction temperature
WMA Additives Added to Binder

- Weigh required additive (by wt. of binder) into small container
- Heat covered binder in 135°C oven until able to pour
- Add additive to binder and stir
- Store in covered container at room temperature until ready to use
WMA Additives Added to Binder

• Prepare Specimens:
 • Heat to previous mentioned temp
 • Add liquid anti-strip to binder (if required)
 • Dry mix hot aggregate and RAP
 • Form crater and add binder
 • Mix 90 seconds
 • 2 hour aging at planned field compaction temp
WMA Additives Added to Mixture

• Weigh required additive into small container
 • Based on Total AC, or Total mix?
• Add liquid anti-strip to binder (if required)
• Dry mix hot aggregate and RAP
• Form crater and add binder
• Pour WMA additive into pool of new binder
• Mix 90 seconds
• 2 hour aging At planned field compaction temp
WMA with Wet Aggregate Fraction

• Weigh required additive into small container
 • By weight of binder
• Heat covered binder in 135°C oven until able to pour
• Add additive to binder and stir
• Add moisture to wet aggregate fraction; mix, cover and let stand for 2 hours
WMA with Wet Aggregate Fraction

- Prepare Specimens:
 - Dry mix hot dry aggregate portion and RAP
 - Add additive to binder immediately before mixing
 - Form crater and add binder
 - Mix 30 seconds
 - Add wet aggregate fraction; mix for 60 more seconds
 - Mix shall be between 90-100°C (194-212°F)
 - 2 hour aging at planned field compaction temp
WMA Foamed Mixtures

• Add liquid anti-strip additive to binder, if required
• Prepare foamed binder per supplier’s instructions
• Dry mix hot aggregate and RAP
• Form crater and add foamed binder
• Mix 90 seconds
• 2 hour aging at planned field compaction temp
Mixture Coating

• Mixing Times in AASHTO R35
• Separate Coarse Aggregate
 • ≥ 12.5mm NMAS, use 9.5 mm sieve
 • ≤ 9.5 mm NMAS, use 4.75 mm sieve
 • Minimum of 200 particles
• Evaluate per AASHTO T195
• Criteria: ≥ 95%

% Coated Particles = \(\left(\frac{\text{No. of fully coated particles}}{\text{No. of total particles}} \right) \times 100 \)
Compactibility

- Compact 2 specimens @ optimum AC to N_d at planned field compaction temperature
 - Determine gyrations to 92% of G_{mm}
- Compact 2 specimens @ optimum AC to N_d at 30 °C below planned field compaction temperature
 - Determine gyrations to 92% of G_{mm}
- Criteria: Ratio ≤ 1.25

\[
\text{Ratio} = \frac{(N_{92})T - 30}{(N_{92})T} \leq 1.25
\]
Calculate $\% G_{MM}$ for Each Gyration

$$\% G_{mm} = 100 \times \left(\frac{G_{mb} \times hd}{G_{mm} \times hn}\right)$$
Compactibility

Gmm = 2.572
Gmb = 2.469

<table>
<thead>
<tr>
<th>Gyrations</th>
<th>Specimen #1</th>
<th>Specimen #2</th>
<th>Average</th>
<th>% Gmm</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>116.7</td>
<td>116.8</td>
<td>116.8</td>
<td>91.7</td>
</tr>
<tr>
<td>23</td>
<td>116.6</td>
<td>116.6</td>
<td>116.6</td>
<td>91.8</td>
</tr>
<tr>
<td>24</td>
<td>116.4</td>
<td>116.5</td>
<td>116.4</td>
<td>91.9</td>
</tr>
<tr>
<td>25</td>
<td>116.2</td>
<td>116.2</td>
<td>116.2</td>
<td>92.1</td>
</tr>
<tr>
<td>26</td>
<td>116.0</td>
<td>116.0</td>
<td>116.0</td>
<td>92.3</td>
</tr>
<tr>
<td>100</td>
<td>111.4</td>
<td>111.6</td>
<td>111.5</td>
<td>96</td>
</tr>
</tbody>
</table>

92% Gmm at 250°F (121°C) = 21 gyrations
92% Gmm at 196°F (91°C) = 25 gyrations

\[\text{Ratio} = \frac{25}{21} = 1.19, \leq 1.25 \]
Compactibility

- If recovered RAP binder grade = PG82-xx
 - Minimum compaction temperature = 82°C (180°F)
Moisture Susceptibility

- WMA with anti-strip: TSR ≥ in 67% of mixes
- WMA without anti-strip: TSR ≤ in 79% of mixes

- Compact to 7.0 ± 0.5% Va
- TSR ≥ 0.80
- No visual stripping
Flow Number

Test Conditions from AASHTO TP 79

- Compact prepared samples after 2 hour short-term conditioning at compaction temp
- Core 100 mm diameter by 150 mm high sample from 150 mm diameter by 175 mm high sample (AASHTO PP60)
Flow Number

Test Conditions from NCHRP 9-33

- $V_a = 7.0 \pm 0.5\%$
- Temperature = 50% Reliability @ high pavement temperature per LTPPBind v 3.1
 - Surface = 20 mm depth
 - Other layers = Top of layer
 - No adjustments for traffic or speed
- Unconfined
- 600 kPa Repeated Deviator Stress
- 30 kPa Contact Deviator Stress
Rutting Resistance

AASHTO T 79, Flow Number

<table>
<thead>
<tr>
<th>Traffic Level, Million ESALs</th>
<th>Flow Number, Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3</td>
<td>N/A</td>
</tr>
<tr>
<td>3 to < 10</td>
<td>30</td>
</tr>
<tr>
<td>10 to < 30</td>
<td>105</td>
</tr>
<tr>
<td>≥ 30</td>
<td>415</td>
</tr>
</tbody>
</table>
Adjusting Mix to Meet Specifications

Consult WMA Technology Supplier for issues with:

- Coating
- Compactibility
- Moisture Sensitivity
Adjusting Mix to Meet Specifications

Rutting Resistance:

- Change binder grade (+1 high grade = factor of 2)
Adjusting Mix to Meet Specifications

Rutting Resistance:

- Change binder grade (+1 high grade = factor of 2)
- Add RAP (25-30% RAP = +1 high grade)
Adjusting Mix to Meet Specifications

Rutting Resistance:

- Change binder grade (+1 high grade = factor of 2)
- Add RAP (25-30% RAP = +1 high grade)
- Increase filler content (+50 fineness modulus = factor of 2)
Adjusting Mix to Meet Specifications

Rutting Resistance:
- Change binder grade (+1 high grade = factor of 2)
- Add RAP (25-30% RAP = +1 high grade)
- Increase filler content (+ 50 fineness modulus = factor of 2)
- Decrease VMA (-1% = factor of 1.2)
Adjusting Mix to Meet Specifications

Rutting Resistance:
- Change binder grade (+1 high grade = factor of 2)
- Add RAP (25-30% RAP = +1 high grade)
- Increase filler content (+ 50 fineness modulus = factor of 2)
- Decrease VMA (-1% = factor of 1.2)
- Increase N_d (+1 level = factor of 1.2)
Summary

- Check WMA mixes for:
 - Coating
 - Compactibility
 - Moisture Sensitivity
 - Rutting Resistance
- Be sure whether additive rate based on binder weight or total mix weight
Available Resource
National Research Initiatives

• NCHRP 9-43 “Mix Design Practices for Warm Mix Asphalt”
• NCHRP Report 691
• Appendix to AASHTO R35
Course Number: FHWA-NHI-131137

Special Mixture Design Considerations and Methods for Warm Mix Asphalt - WEB-BASED

PROGRAM AREA: Pavements and Materials

COURSE NUMBER: FHWA-NHI-131137

CALENDAR YEAR LENGTH CEU FEE
2011 2 Hours 0 Units $0 Per Participant
2012 2 Hours 0 Units $0 Per Participant

TRAINING LEVEL: Basic

CLASS SIZE: Minimum:1; Maximum:1

DESCRIPTION:

Highway transportation agencies are exploring the use of warm mix asphalt (WMA) for pavement projects. One of their main questions, particularly for agency mixture design technicians and engineers, is how WMA design differs from hot mix asphalt (HMA) design. "Mixture Design for Warm Mix Asphalt" is a Web-based training that presents the modifications to the current Superpave volumetric design procedure, as described in AASHTO R35, that are needed to complete a WMA mixture design. The training highlights key differences in WMA and HMA design procedures, and provides an opportunity to apply the AASHTO R35 standard practice to a WMA design modification.

Courtesy: Matt Corrigan, FHWA